A trace partitioned Gray code for q-ary generalized Fibonacci strings

A. Bernini, S. Bilotta, R. Pinzani

Dipartimento di Matematica e Informatica “Ulisse Dini”
Università degli Studi di Firenze, Viale G.B. Morgagni 65, 50134 Firenze, Italy

e-mail: {antonio.bernini}{stefano.bilotta}{renzo.pinzani@unifi}@unifi.it

V. Vajnovszki
LE2I, Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France

e-mail: vvajnov@u-bourgogne.fr

August 19, 2013

Abstract

We provide a trace partitioned Gray code for the set of q-ary strings avoiding a pattern constituted by k consecutive equal symbols. The definition of this Gray code is based on two different constructions, according to the parity of q. This result generalizes, and is based on, a Gray code for binary strings avoiding k consecutive 0’s.

Keyword: Gray codes, pattern avoiding strings, generalized Fibonacci numbers

1 Introduction

The famous k-generalized Fibonacci sequence $\{f_n^{(k)}\}_{n \geq 0}$ is defined by

$$f_n^{(k)} = f_{n-1}^{(k)} + f_{n-2}^{(k)} + \cdots + f_{n-k}^{(k)} , \text{ for } n \geq k,$$

with initial conditions $f_i^{(k)} = 0$ for $0 \leq i \leq k-2$, and $f_{k-1}^{(k)} = 1$. This sequence is related to the enumeration of binary strings avoiding k consecutive 1’s [4], called k-generalized Fibonacci strings.

If an alphabet of cardinality $q \geq 2$ is used, then the enumeration of the strings of length n and avoiding a pattern constituted by k consecutive occurrences of a same symbol is given by

$$f_n^{(k)} = (q-1) \left(f_{n-1,q}^{(k)} + f_{n-2,q}^{(k)} + \cdots + f_{n-k,q}^{(k)} \right), \text{ for } n \geq k,$$

with $f_i^{(k)} = q^i$, for $0 \leq i \leq k-1$; and in particular $f_{n+1}^{(k)} = f_{n,2}^{(k)}$. This sequence is a particular case of the weighted k-generalized Fibonacci sequence (studied and used in [5] [7]) where all the weights are equal to $q-1$. Similarly to the binary case, by a q-ary k-generalized Fibonacci string we mean a string over a $q \geq 2$ letter alphabet A and avoiding k consecutive occurrences of a given symbol of A. For example, for $k = 3$ and $A = \{0,1,2,3\}$, 111 or 222 is avoided, but not both.
Once a class of objects is defined, often it could be of interest to list or generate them according to a particular criterion. A special way to do this is to generate the objects so that any two consecutive ones differ as little as possible, i.e., in a Gray code manner [2]. Such a particular code has already been proposed for (binary) \(k \)-generalized Fibonacci strings [9].

In the present work we provide a Gray code for the \(q \)-ary \(k \)-generalized Fibonacci strings, \(q \geq 2 \), which extends the approach in [9]. Our method gives a trace partitioned code where strings with the same trace are contiguous (for more details see Section 2). Analogously to the kind of the forbidden pattern considered in [9] (which is a sequence of \(k \) consecutive 1’s), here we consider the avoidance of \(k \) consecutive occurrences of a give symbol, not necessarily 1, of a \(q \)-ary alphabet.

If \(L \) is a set of strings over an alphabet \(A \), then by \(L \) we denote the ordered list where the strings of \(L \) are listed following a certain criterion. If the Hamming distance [3] between two successive elements of \(L \) is bounded by a constant, than \(L \) is called Gray code list. The notations we are going to use are defined below:

- if \(\alpha \) and \(\beta \) are two same length strings, then \(d_H(\alpha, \beta) \) denotes their Hamming distance;
- \(\overline{L} \) denotes the list obtained by covering \(L \) in reverse order;
- first(\(L \)) and last(\(L \)) are the first and the last element of \(L \), respectively, and clearly first(\(L \)) = last(\(\overline{L} \)), and last(\(L \)) = first(\(\overline{L} \));
- if \(u \) is a string, then \(u \cdot L \) is the list obtained by prepending \(u \) to each string in \(L \);
- if \(L \) and \(L' \) are two lists, then \(L \circ L' \) is the concatenation of the two lists, obtained by appending the elements of \(L' \) after the elements of \(L \).

2 Gray codes

The well known Binary Reflected Gray Code (BRGC) [2] can be generalized to an alphabet of cardinality greater than 2 [1, 10]. If \(A = \{a_0, a_1, \ldots, a_{q-1}\} \), then the list \(G_q^n \) of the length \(n \) strings over \(A \) is given by:

\[
G_q^n = \begin{cases}
\lambda & \text{if } n = 0, \\
 a_0 \cdot G_q^{n-1} \circ a_1 \cdot \overline{G_q^{n-1}} \circ \cdots \circ a_{q-1} \cdot \overline{G_q^{n-1}} & \text{if } n > 0,
\end{cases}
\]

(1)

where \(\overline{G_q^{n-1}} \) is \(G_q^{n-1} \) if \(q \) is even or \(\overline{G_q^{n-1}} \) if \(q \) is odd, and \(\lambda \) is the empty string. It is proved that \(G_q^n \) is a Gray code list with Hamming distance 1 and the reader can easily prove the following proposition.

Proposition 1. If \(q \) is odd, then \(\text{last}(G_q^n) = a_{q-1}^n \) and \(\text{first}(G_q^n) = a_0^n \). In particular,

\[
\text{last}(G_q^n) = \text{last}(G_q^{n-1}) \cdot a_{q-1} = a_{q-1} \cdot \text{last}(G_q^{n-1}),
\]

and

\[
\text{first}(G_q^n) = \text{first}(G_q^{n-1}) \cdot a_0 = a_0 \cdot \text{first}(G_q^{n-1}).
\]
If \(q \) is even, then \(\text{last}(G_n^q) = a_{q-1}a_0^{n-1} \) and \(\text{first}(G_n^q) = a_0^n \). In particular, for \(n > 1 \),

\[
\text{last}(G_n^q) = a_{q-1}a_0^{n-1} = \text{last}(G_{n-1}^q) \cdot a_0,
\]

and

\[
\text{first}(G_n^q) = a_0^n = \text{first}(G_{n-1}^q) \cdot a_0 = a_0 \cdot \text{first}(G_{n-1}^q).
\]

We will give a Gray code for the set of \(q \)-ary \(k \)-generalized Fibonacci strings of length \(n \), where the Hamming distance between two consecutive strings is 1. The definition of our Gray code depends on the parity of \(q \), and we will refer simply to Gray code for a list where two successive elements have Hamming distance equal to 1, and without any loss of generality we will consider the alphabet \(A = \{0, 1, \ldots, q - 1\} \). For our topics we are going to consider the avoidance of the pattern \(0^k \), for a given \(k \geq 2 \), but all of our constructions can be easily translated to the pattern \(i^k \), for any \(i \in A \).

Our approach starts from the definition of the Gray code for binary \(k \)-generalized Fibonacci strings given in [9], then using a bit replacing technique we extend the binary alphabet to \(A \), leading to a trace partitioned Gray code (where strings with the same trace are consecutive).

The trace of a \(q \)-ary string is a binary string obtained by replacing each symbol different from 0 by 1.

Before going along in our discussion, we define a tool for manipulating the symbols of a string. For \(q \geq 3 \), we denote by \(G_{t-1}^q \oplus 1 \) the list obtained from \(G_{t-1}^q \) by adding 1 to each symbol in each string in \(G_{t-1}^q \). Actually, \(G_{t-1}^q \oplus 1 \) is the Gray code defined in relation (1) for \(\{a_0, a_1, \ldots, a_{q-1}\} = \{1, 2, \ldots, q\} \). For example, \(G_2^3 \oplus 1 = (111, 112, 122, 121, 221, 222, 212, 211) \).

If \(\beta \) is a binary string of length \(n \) such that \(|\beta|_1 = t \) (the number of 1’s in \(\beta \)), we define the expansion of \(\beta \), denoted by \(\varepsilon(\beta) \), as the list of \((q - 1)^t \) strings, where the \(i \)-th string is obtained by replacing the \(t \) 1’s of \(\beta \) by the \(t \) symbols (read from left to right) of the \(i \)-th string in \(G_{t-1}^q \oplus 1 \). For example, if \(q = 3 \) and \(\beta = 01011 \) (the trace), then with \(G_2^3 \oplus 1 \) given above, we have \(\varepsilon(\beta) = (01011, 01012, 01022, 01021, 02021, 02022, 02012, 02011) \). Notice that in particular \(\text{first}(\varepsilon(\beta)) = \beta \) and all the elements of \(\varepsilon(\beta) \) have the same trace.

We observe that \(\varepsilon(\beta) \) is the list obtained from \(G_{t-1}^q \) by adding 1 to each symbol of each string in \(G_{t-1}^q \), then inserting some 0’s, each time in the same positions. Since \(G_{t-1}^q \) is a Gray code and the insertions of the 0’s does not change the Hamming distance between two successive element of \(\varepsilon(\beta) \) (which is 1), we have the following:

Proposition 2. For any \(q \geq 3 \) and binary string \(\beta \), the list \(\varepsilon(\beta) \) is a Gray code.

The Gray code we are going to consider as the starting point of our argument is the one defined in [9], where the author deals with binary strings avoiding \(k \) consecutive 1’s. Since we are interested in the avoidance of \(k \) consecutive 0’s, we recall, for the sake of clearness, the definition in [9] adapted according to our needs which cause some slight differences with respect to the original definition in [9].

Let \(\mathcal{F}_n^{(k)} \) be the list defined as:

\[
\mathcal{F}_n^{(k)} = \begin{cases}
\mathcal{C}_n & \text{if } 0 \leq n < k, \\
1 \cdot \mathcal{F}_{n-1}^{(k)} \circ 01 \cdot \mathcal{F}_{n-2}^{(k)} \circ 001 \cdot \mathcal{F}_{n-3}^{(k)} \circ \ldots \circ 0^{k-1}1 \cdot \mathcal{F}_{n-k}^{(k)} & \text{if } n \geq k,
\end{cases}
\]
where

\[C_n = \begin{cases}
\lambda & \text{if } n = 0, \\
1 \cdot C_{n-1} \circ 0 \cdot C_{n-1} & \text{if } n \geq 1,
\end{cases} \]

with \(\lambda \) the empty string.

It is proved \[9\] that \(F_{n,q}^{(k)} \) is a Gray code for the set of binary length \(n \) strings avoiding \(k \) consecutive 0’s, and thus the number of strings in \(F_{n,q}^{(k)} \) is \(f_{n+k}^{(k)} \), the \((n+k)\)-th value of the \(k \)-generalized Fibonacci sequence.

Now let \(F_{n,q}^{(k)} \) be the set of length \(n \) strings over \(A = \{0,1,\ldots,q - 1\} \), \(q > 2 \), avoiding \(k \) consecutive 0’s, so \(|F_{n,q}^{(k)}| = f_{n,q}^{(k)} \) (see Introduction). The aim is the construction of a Gray code for \(F_{n,q}^{(k)} \). Our definition of such a Gray code is based on the expansion \(\varepsilon(\alpha_i) \) (or its reverse \(\overline{\varepsilon(\alpha_i)} \)) of each element of \(F_{n,q}^{(k)} = (\alpha_1, \alpha_2, \ldots, \alpha_{f_{n+k}^{(k)}}) \), and then concatenating them opportunely, according to the parity of \(q \).

Let us illustrate the construction of the list for the set \(F_{n,q}^{(k)} \), of the form

\[\varepsilon(\alpha_1) \circ \varepsilon(\alpha_2) \circ \varepsilon(\alpha_3) \circ \varepsilon(\alpha_4) \circ \cdots \quad (3) \]

where \(\alpha_i \) covers the list \(F_{n,q}^{(k)} \). As we will see below, this construction yields a Gray code when \(q \) is even, but not necessarily when \(q \) is odd.

When \(k = q = n = 3 \), the list \(F_{3,3}^{(k)} \) is \(F_{3,3}^{(3)} = (100, 101, 111, 110, 010, 011, 001) \); \(G_2^1 \oplus 1 = (1, 2) \), \(G_2^2 \oplus 1 = (11, 12, 22, 21) \), and \(G_2^2 \oplus 1 \) is given in the example preceding Proposition \[2\]. The expansions of the elements of \(F_{3,3}^{(3)} \) are:

\[
\begin{align*}
\varepsilon(\alpha_1) &= \varepsilon(100) = (100, 200) \\
\varepsilon(\alpha_2) &= \varepsilon(101) = (101, 102, 202, 201) \\
\varepsilon(\alpha_3) &= \varepsilon(111) = (111, 112, 122, 121, 222, 221, 212, 211) \\
\varepsilon(\alpha_4) &= \varepsilon(110) = (110, 120, 220, 210) \\
\varepsilon(\alpha_5) &= \varepsilon(010) = (010, 020) \\
\varepsilon(\alpha_6) &= \varepsilon(011) = (011, 012, 022, 021) \\
\varepsilon(\alpha_7) &= \varepsilon(001) = (001, 002),
\end{align*}
\]

and the list of the form \((3) \) for \(F_{3,3}^{(3)} \) is

\[\varepsilon(\alpha_1) \circ \varepsilon(\alpha_2) \circ \varepsilon(\alpha_3) \circ \varepsilon(\alpha_4) \circ \varepsilon(\alpha_5) \circ \varepsilon(\alpha_6) \circ \varepsilon(\alpha_7) \]

which is a Gray code, as it easily can be checked. However, this is not true in general. For example, if \(n = 4 \), \(k = q = 3 \), concatenating \(\varepsilon(\alpha_i) \) and \(\varepsilon(\alpha_{i+1}) \), alternatively as in \((3) \) does not yield a Gray code. Indeed,

- \(\alpha_7 = 1100 \) and \(\alpha_8 = 0100 \), and

- \(\varepsilon(\alpha_7) = (1100, 1200, 2200, 2100) \) and \(\varepsilon(\alpha_8) = (0100, 0200) \).

And in the concatenation

\[\varepsilon(\alpha_1) \circ \varepsilon(\alpha_2) \circ \varepsilon(\alpha_3) \circ \varepsilon(\alpha_4) \circ \varepsilon(\alpha_5) \circ \varepsilon(\alpha_6) \circ \varepsilon(\alpha_7) \circ \varepsilon(\alpha_8) \circ \varepsilon(\alpha_9) \circ \varepsilon(\alpha_{10}) \circ \varepsilon(\alpha_{11}) \circ \varepsilon(\alpha_{12}) \circ \varepsilon(\alpha_{13}), \]

in the transition from \(\varepsilon(\alpha_7) \) to \(\varepsilon(\alpha_8) \) we found 2100 followed by 0200 which differ in more than one position.
2.1 The case of \(q \) odd

A way to overcome the previous difficulties is to consider the partition of \(F_n^{(k)} \) as in its definition \(^2\). For \(j = 1, 2, \ldots, k \), let \(\alpha_i^{(j)} \) be the \(i \)-th element in the list \(0^{j-1} \cdot F_{n-j}^{(k)} \), and

\[
\Gamma_j = \varepsilon(\alpha_1^{(j)}) \circ \varepsilon(\alpha_2^{(j)}) \circ \varepsilon(\alpha_3^{(j)}) \circ \ldots \circ \varepsilon(\alpha_\ell^{(j)}),
\]

where \(\varepsilon(\alpha_i^{(j)}) = \varepsilon(\alpha_i^{(j)\prime}) \) if \(f_{n+k-j}^{(k)} \) is odd and \(\varepsilon(\alpha_i^{(j)}) = \varepsilon(\alpha_i^{(j)\prime}) \) if \(f_{n+k-j}^{(k)} \) is even.

Let define \(F_{n,q}^{(k)} \) as

\[
F_{n,q}^{(k)} = \Gamma_1 \circ \Gamma_2 \circ \ldots \circ \Gamma_k,
\]

and clearly \(F_{n,q}^{(k)} \) is a list for the set \(F_{n,q}^{(k)} \) and the next proposition proves that it is a Gray code.

Proposition 3. If \(q \) is odd, then the list \(F_{n,q}^{(k)} = \Gamma_1 \circ \Gamma_2 \circ \ldots \circ \Gamma_k \) is a Gray code list with Hamming distance 1.

Proof. We have to prove the following:

1. \(\Gamma_j \) is a Gray code list, for each \(j = 1, 2, \ldots, k \), with Hamming distance 1;
2. \(d_H(\text{last}(\Gamma_j), \text{first}(\Gamma_{j+1})) = 1 \), for \(j = 1, 2, \ldots, k-1 \).

By Proposition \(^2\) it follows that \(\varepsilon(\alpha_i^{(j)}) \) is a Gray code, and for the point 1 we have to check that, if \(i \) is odd, \(d_H(\text{last}(\varepsilon(\alpha_i^{(j)})), \text{first}(\varepsilon(\alpha_{i+1}^{(j)}))) = 1 \) and that, if \(i \) is even, \(d_H(\text{last}(\varepsilon(\alpha_i^{(j)})), \text{first}(\varepsilon(\alpha_{i+1}^{(j)}))) = 1 \).

- When \(i \) is odd we observe that, for some \(v \) and \(w \),
 \[
 \alpha_i^{(j)} = 0^{j-1}v, \quad \text{and} \quad \alpha_{i+1}^{(j)} = 0^{j-1}w,
 \]
 where \(v \) and \(w \) differ in a single position since \(\alpha_i^{(j)} \) and \(\alpha_{i+1}^{(j)} \) are two consecutive binary strings in \(F_{n,q}^{(k)} \), which is a Gray code list.

Let \(t = |v|_1 \), and since \(q-1 \) is even, by Proposition \(^4\) it follows that \(\text{last}(G^{q-1}_{t+1}) = (q-1)1^t \) which occurs in the last element of the expansion of \(\alpha_i^{(j)} \). Therefore, \(\text{last}(\varepsilon(\alpha_i^{(j)})) = 0^{j-1}(q-1)v \).

Now, \(\text{first}(\varepsilon(\alpha_{i+1}^{(j)})) \) is equal to \(\text{last}(\varepsilon(\alpha_{i+1}^{(j)})) \), which as previously, is equal in turn to \(0^{j-1}(q-1)w \).

Since \(v \) and \(w \) differ in a single position, so do \(\text{last}(\varepsilon(\alpha_i^{(j)})) \) and \(\text{first}(\varepsilon(\alpha_{i+1}^{(j)})) \).

- If \(i \) is even, and since \(\text{last}(\varepsilon(\alpha_i^{(j)})) = \text{first}(\varepsilon(\alpha_i^{(j)})) \), by the definition of expansion it follows that
 \[
 \text{first}(\varepsilon(\alpha_i^{(j)})) = \alpha_i^{(j)}, \quad \text{and} \quad \text{first}(\varepsilon(\alpha_{i+1}^{(j)})) = \alpha_{i+1}^{(j)}.
 \]
Since $\alpha_1^{(j)}$ and $\alpha_{i+1}^{(j)}$ are two consecutive strings, their Hamming distance is 1.

For the second point, we have

$$\text{first}(\Gamma_{j+1}) = \text{first}(\varepsilon(\alpha_{i+1}^{(j)})),$$

and

$$\text{last}(\Gamma_j) = \text{last}(\varepsilon(\alpha_i^{(j)})),$$

where, for some w' and w'',

$$\alpha_1^{(j+1)} = 0^j w', \text{ and}$$

$$\alpha_i^{(j)} = 0^{j-1} w''.$$

Since $\alpha_i^{(j)}$ and $\alpha_{1}^{(j+1)}$ are two consecutive strings in $\mathcal{F}_n^{(k)}$, their Hamming distance is 1, and thus $w'' = 1 w'$. Two cases can occur:

- if $f_{n+k-j}^{(k)}$ is even, then $\text{last}(\Gamma_j) = \text{last}(\varepsilon(\alpha_i^{(j)})) = \text{last}(\varepsilon(\alpha_i^{(j)})) = \alpha_i^{(j)}$. Moreover, $\text{first}(\Gamma_{j+1}) = \text{first}(\varepsilon(\alpha_1^{(j+1)})) = \alpha_1^{(j+1)}$.

- if $f_{n+k-j}^{(k)}$ is odd, then $\text{last}(\Gamma_j) = \text{last}(\varepsilon(\alpha_i^{(j)})) = 0^j (q - 1) w''$ and $\text{first}(\Gamma_{j+1}) = \text{first}(\varepsilon(\alpha_1^{(j+1)})) = \alpha_1^{(j+1)} = 0^j 1 w' = 0^j w''$.

In any case, $d_H(\text{last}(\Gamma_j), \text{first}(\Gamma_{j+1})) = 1$.

Therefore the proof is concluded and $\mathcal{F}_n^{(k)}$ is a Gray code list with Hamming distance 1. \(\square\)

It is easy to see that, generally, when q is even, the construction given in the previous proposition does not yield a Gray code.

For the sake of clearness, we illustrate the previous construction for the Gray code when $n = 4$, $k = 3$ and $A = \{0, 1, 2\}$. We have:

$$\mathcal{F}_4^{(3)} = \{(0101, 1011, 1010, 1110, 1111, 1101, 1100, 0100, 0101, 0111, 0110, 0010, 0011)\};$$

$$G_0^2 \oplus 1 = \lambda;$$

$$G_1^2 \oplus 1 = (1, 2);$$

$$G_2^2 \oplus 1 = (11, 12, 22, 21);$$

$$G_3^2 \oplus 1 = (111, 112, 122, 121, 221, 222, 212, 211);$$

$$G_4^2 \oplus 1 = (1111, 1112, 1122, 1121, 1221, 1222, 1212, 1211, 2211, 2212, 2222, 2221, 2121, 2122, 2112, 2111);$$

6
\[\Gamma_1 = (1001, 1002, 2002, 2001, 2111, \ldots, 1011, 1010, \ldots, 2110, \ldots, 1110), \]
\[1111, \ldots, 2111, 2101, \ldots, 1101, 1100, \ldots, 2100); \]
\[\varepsilon(\alpha_1^{(1)}) \varepsilon(\alpha_2^{(1)}) \varepsilon(\alpha_3^{(1)}) \varepsilon(\alpha_4^{(1)}) \]
\[\Gamma_2 = (0100, 0200, 0201, \ldots, 0101, 0111, \ldots, 0211, 0210, \ldots, 0110); \]
\[\varepsilon(\alpha_2^{(2)}) \varepsilon(\alpha_3^{(2)}) \varepsilon(\alpha_4^{(2)}) \]
\[\Gamma_3 = (0010, 0020, 0021, \ldots, 0011). \]
\[\varepsilon(\alpha_3^{(3)}) \varepsilon(\alpha_4^{(3)}) \]

The reader can easily check that \(\mathcal{F}_{4,3}^{(3)} = \Gamma_1 \circ \Gamma_2 \circ \Gamma_3 \) is a Gray code with Hamming distance 1.

2.2 The case of \(q \) even

In this case the construction of a Gray code list for \(F_{n,q}^{(k)} \) is straightforward, and based on the discussion at the beginning of this section: just consider the expansions of the binary strings \(\alpha_i \) in \(F_{n,q}^{(k)} \), for \(i = 1, 2, \ldots, f_{n+k}^{(k)} \), and concatenate them, taking \(\varepsilon(\alpha_i) \) and \(\varepsilon(\alpha_{i+1}) \) alternatively, as in expression (3). The next proposition shows that the obtained list is a Gray code.

Proposition 4. If \(q \) is even, then the list

\[\mathcal{F}_{n,q}^{(k)} = \varepsilon(\alpha_1) \circ \varepsilon(\alpha_2) \circ \ldots \circ \varepsilon'(\alpha_{f_{n+k}^{(k)}}), \]

where \(\varepsilon'(\alpha_{f_{n+k}^{(k)}}) = \varepsilon(\alpha_{f_{n+k}^{(k)}}) \) if \(f_{n+k}^{(k)} \) is odd and \(\varepsilon'(\alpha_{f_{n+k}^{(k)}}) = \varepsilon(\alpha_{f_{n+k}^{(k)}}) \) if \(f_{n+k}^{(k)} \) is even, is a Gray code list with Hamming distance 1.

Proof. By Proposition 2 each \(\varepsilon(\alpha_i) \) is a Gray code list, and, we have to check that, if \(i \) is odd, \(d_H(\text{last}(\varepsilon(\alpha_i)), \text{first}(\varepsilon(\alpha_{i+1}))) = 1 \) and that, if \(i \) is even, \(d_H(\text{last}(\varepsilon(\alpha_i)), \text{first}(\varepsilon(\alpha_{i+1}))) = 1 \).

- In the first case (\(i \) is odd), by Proposition 1 and the definition of expansion, it follows that in \(\text{last}(\varepsilon(\alpha_i)) \) and in \(\text{last}(\varepsilon(\alpha_{i+1})) \) the symbols different from 0 are equal to \(q-1 \). For example, if \(\alpha_i = 10110 \), then \(\text{last}(\varepsilon(\alpha_i)) = (q-1)(q-1)(q-1)0 \). Moreover, since \(\alpha_i \) and \(\alpha_{i+1} \) are two consecutive strings of \(\mathcal{F}_{n,q}^{(k)} \), \(d_H(\alpha_i, \alpha_{i+1}) = 1 \), and so \(d_H(\text{last}(\varepsilon(\alpha_i)), \text{last}(\varepsilon(\alpha_{i+1}))) = 1 \).

- If \(i \) is even, we observe that

\[\text{last}(\varepsilon(\alpha_i)) = \text{first}(\varepsilon(\alpha_i)) = \alpha_i, \]
\[\text{first}(\varepsilon(\alpha_{i+1})) = \alpha_{i+1}. \]

Since \(d_H(\alpha_i, \alpha_{i+1}) = 1 \), then \(d_H(\text{last}(\varepsilon(\alpha_i)), \text{first}(\varepsilon(\alpha_{i+1}))) = 1 \).

\(\square \)
3 Conclusions and further developments

In this paper we propose a trace partitioned Gray code for the q-ary k-generalized Fibonacci strings of length n, where the Hamming distance between two successive strings is 1. Our constructions are based on the expansion of an existing Gray code when $q = 2$. A consequence of the expansion technique is that our Gray code has the following property: if we replace each non-zero symbol in each string by 1, and ‘collapse’ the obtained list by keeping one copy of each binary strings, then the existing Gray code for $q = 2$ is obtained.

The investigation on the existence of Gray codes for strings on a q-ary alphabet avoiding a general consecutive pattern has already been studied: in [8] the author gives such a Gray code only when q even, while the case of q odd is left open. Our Gray code deals with the avoidance of a particular pattern but works for any q, and an interesting development could be a deeper investigation to check if this constructions can be applied to a general consecutive pattern in order to solve the open question in [8]. Also, it would be of interest to implement our Gray code definition into an efficient generating algorithm for the set of underlying strings.

References

